

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Designing road vehicle subsystems [N1MiBP1>PPS]

Course

Field of study Year/Semester

Mechanical and Automotive Engineering 3/6

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

first-cycle Polish

Form of study Requirements

part-time elective

Number of hours

Lecture Laboratory classes Other

18

Tutorials Projects/seminars

0 0

Number of credit points

4,00

Coordinators Lecturers

dr inż. Jerzy Kupiec jerzy.kupiec@put.poznan.pl

Prerequisites

Basic knowledge of technical drawing, machine construction, car construction and car mechanics. Knowledge of the basic principles of carrying out strength and fatigue analyzes. Understanding the basic principles of design. Ability to adapt the calculation process to the task performed, the selection and use of dependencies in the field of traction calculations, geometric structures, strength and fatigue. Spreadsheet support. Determining the hierarchy and schedule of tasks when designing typical mechanical structures. The ability to identify problems and solve computational and construction dilemmas. Independence.

0

Course objective

Provide students with basic information on the design of vehicle systems and components, in particular the methods of designing mechanical car drive systems and their components.

Course-related learning outcomes

Knowledge:

M1_W05 Has basic knowledge of the basics of machine design and the theory of machines and mechanisms, including mechanical vibrations.

M1 W18 Is aware of the latest trends in machine construction, i.e. automation and mechatronization,

automation of machine design and construction processes, increased safety and comfort of operation, the use of modern construction materials.

Skills:

M1_U02 Can search in catalogs and on manufacturers" websites ready-made machine components to be used in his own projects.

M1_U16 Can create a system diagram, select elements and perform basic calculations using ready-made computational packages of mechanical, hydrostatic, electric or hybrid machine drive system.

Social competences:

M1_K02 Is ready to recognize the importance of knowledge in solving cognitive and practical problems and to consult experts in case of difficulties in solving the problem on its own.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Written or oral exam on the lecture material, completion of laboratory classes based on the documentation of the tasks performed.

Programme content

Configuration of driveline systems.

Design of friction clutch in vehicles.

Calculation of compression systems - cylindrical springs.

Calculation of compression systems - disc springs.

Helical gears with fixed axes.

Design of synchronizer.

Hydrokinetic gears.

Determination of design factors for the braking system.

Fundamentals of suspension system design-leading elements.

Fundamentals of suspension system design-spring elements.

Steering systems.

Design of vehicle support structures.

Course topics

Specifics of drivetrain systems of cars, vans and trucks. Classification of drive train design solutions in passenger cars.

Design of disc clutches - calculation algorithms for: clutch disc geometry, friction clutch life and (central and helical) compression springs.

Types of mechanical gearboxes. Selection of basic geometric parameters of gears and teeth. Materials and their heat treatment. Checking teeth for fatigue strength. Methods of taking into account variable loads.

Synchronizers: synchronizing torque,

synchronization time and heat loads.

Calculation of main gears (bevel and hypoid) in drive bridges. Determination of basic parameters of crown wheels and satellites in differentials.

Planetary gears in automatic drive systems - selection of geometric parameters.

Calculation of clutches and hydrokinetic transmissions. Characteristics of clutches and transmissions and their selection for vehicles with automatic transmissions.

Geometric and strength calculations of steering systems including power steering systems.

Classification of braking systems, types of brakes, selection of components, connection structure including control system.

Fundamentals of suspension system design-leading and elastic components.

Fundamentals of design of vehicle support structures.

Teaching methods

- 1. Lecture: multimedia presentation.
- 2. Laboratory classes: preliminary design development of vehicle subsystems, strength and durability calculations and modification of previously adopted subsystems.

Bibliography

Basic

- 1. Jaśkiewicz Zb., Projektowanie układów napędowych pojazdów samochodowych, WKiŁ, Warszawa, 1982
- 2. Jaśkiewicz Zb., Wąsiewski A., Układy napędowe pojazdów samochodowych: obliczenia projektowe, OWPW, Warszawa, 2002
- 3. Poradnik inżyniera samochodowego (red. Jaśkiewicz Zb.), WKiŁ, 1990 Additional
- 1. Stańczyk T.L., Lomako D., Komputerowe obliczenia zespołów samochodów i ciągników, WPŚ, Kielce, 2004
- 2. Zając M., Układy przeniesienia napędu samochodów ciężarowych i autobusów, WKiŁ 2008
- 3. Micknass W., Popiol R., Sprenger A., Sprzęgła, skrzynki biegów, wały i półosie napędowe, WKiŁ 2012

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	36	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	64	2,00